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Fault detection and root cause identification are both important tasks in Multivariate Statistical Pro-
cess Control (MSPC) for improving process and product quality. Most traditional control charts, including
Hotelling’s T 2 chart and the Multivariate Exponential Weighted Moving Average (MEWMA) chart, sep-
arate the two tasks into independent and successive procedures by signaling the existence of process
faults followed by auxiliary methods to locate root causes. This paper proposes an integrated procedure,
a Variable-Selection-based MEWMA (VS-MEWMA) chart, for multivariate process monitoring and fault
diagnosis by utilizing dimensionality reduction techniques. The VS-MEWMA chart first locates potentially
out-of-control variables via variable selection and then deploys such information in the monitoring statistics
with the reduction in dimensionality providing increased sensitivity to out-of-control conditions. When a
signal is given, the algorithm also identifies the suspected variables for further root cause diagnosis. Both
numerical simulations and real examples are presented to illustrate the performance of the proposed chart,
as well as design guidelines.
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Introduction

WITH the rapid advances in sensing and metrol-
ogy technology, many companies and organi-

zations nowadays have easy access to data collected
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in production, business transactions, and service op-
erations. These data streams often contain multiple
or even dozens of variables and carry very useful
knowledge and information, which can be extracted
through modeling, characterization, monitoring, and
forecasting. Statistical monitoring and surveillance
of such data streams have been widely recognized
as important and critical tools for detection of ab-
normal behavior and quality improvement. For ex-
ample, in semiconductor and electronic manufactur-
ing, high-dimensional multivariate data can be auto-
matically acquired by sensors and other equipment;
statistical process control techniques have been used
routinely for on-line process control to improve pro-
cess capability through variation reduction (Spanos
(1992), Mason and Young (2002)). In service indus-
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tries, many companies are applying data mining and
surveillance tools to understand customer profiles
with high-dimensional attributes to detect fraudu-
lent behavior in real time, which is referred to as
activity monitoring (Jiang et al. (2007)). For exam-
ple, for credit card or insurance fraud detection, a
collection of thousands of variables and transactions
is closely monitored by a typical credit card com-
pany on a daily basis. In public health management,
surveillance methods have been developed for timely
detection and prevention of various types of adverse
health events so that mitigation strategies can be ini-
tiated promptly. An example of public surveillance
is an increased birth rate of babies with congenital
malformations, which was especially apparent during
the thalidomide tragedy in the early 1960s (Sonesson
and Bock (2003)).

The development of Multivariate Statistical Pro-
cess Control (MSPC) techniques for process mon-
itoring and surveillance is continuously challenged
by two basic requirements: the capability to de-
tect process faults quickly and the ability to lo-
cate shifted variables accurately. The first require-
ment stresses the sensitivity of an MSPC scheme,
while the second concerns the diagnostic capability
of the scheme. However, lower sensitivity in fault de-
tection would provide more out-of-control observa-
tions for diagnosis, o↵ering improved diagnostic re-
sults. These challenges become crucial when the di-
mensionality of data streams is higher, which often
prevents the adoption of well-known MSPC tools in
practice due to the “curse of dimensionality” (Jiang
and Tsui (2008), Wang and Tsung (2008), Zhu and
Jiang (2009)).

However, most MSPC research has focused sepa-
rately on the two objectives of detection and diag-
nosis. One solution for the “curse of dimensionality”
lies in dimensionality-reduction algorithms that can
be used before control charts. If the key informa-
tion about process status can be summarized by a
few variables, monitoring these variables and search-
ing for process faults among a reduced set of vari-
ables is expected to be more e↵ective than mon-
itoring the whole set. Conventional dimensionality
reduction techniques, such as Principal Component
Analysis (PCA) or Independent Component Analysis
(ICA), have been adopted for the purpose of process
monitoring and control. PCA- or ICA-based MSPC
schemes first identify a small set of variables that
are linear combinations of the original variables and
then monitor these derivative statistics against pos-

sible process shifts (e.g., Mastrangelo et al. (1996),
Runger and Alt (1996), Ding et al. (2006)).

A potential disadvantage of these methods is the
use of in-control data to identify the variables to be
monitored, possibly excluding variables with impor-
tant information about shifts to out-of-control condi-
tions. Moreover, the derived statistics may not yield
any meaningful interpretations of the physical pro-
cess and alarms. Once triggered from the derived
statistics, the alarms must be checked against di-
agnosis procedures to identify the root causes of
the alarms. For this purpose, root-cause identifi-
cation algorithms have been studied in MSPC re-
search. For example, Dunia et al. (1996) investi-
gated the e↵ectiveness of PCA for the identification
of faulty sensors. Hawkins (1991), Hawkins (1993),
and Hawkins and Maboudou-Tchao (2008) proposed
a regression-adjusted method that regresses down-
stream variables with respect to upstream variables.
The residuals are then checked to identify possible
shifts. Mason et al. (1995) proposed another way to
check the contribution of each variable based on the
MYT-decomposition method proposed in Mason et
al. (1995) and Mason and Young (1999). All possible
combinations of variables are screened, and the most
significant e↵ects are determined based on statistical
tests. However, there is still a lack of e↵ective diagno-
sis methods for certain control charts that accumu-
late recent process information. For example, when
an out-of-control alarm is triggered by an MEWMA
or multivariate cumulative sum (MCUSUM) (Pig-
natiello and Runger (1990)) chart, it is di�cult to
reasonably associate the alarm to any specific vari-
ables.

Recently, Wang and Jiang (2009) and Zou and
Qiu (2009) independently proposed using variable se-
lection (VS) methods to screen for suspicious vari-
ables and monitor the selected variables in the re-
duced space. Wang and Jiang (2009) developed a
Shewhart-type, variable-selection-based multivariate
(VS-MSPC) chart that uses a forward variable se-
lection (FVS) method to select suspicious variables.
The LASSO-based EWMA (LEWMA) chart devel-
oped in Zou and Qiu (2009) used the exponentially
weighted moving average (EWMA) statistic to ac-
cumulate recent observations and applied the Least
Absolute Shrinkage and Selection Operator (LASSO)
algorithm for VS.

The basic principle underlying these methods is
that, for most processes, the possibility of all vari-
ables in a high-dimensionality process shifting simul-
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taneously is low. Instead, process changes are usu-
ally manifested in only one or a small fraction of
the observed variables. Without assuming any a pri-
ori knowledge of the relationships between the hid-
den causes and the monitored variables, these con-
trol charts can adaptively screen suspicious variables
for monitoring so that the dimensionality of moni-
toring is reduced. Additionally, whenever an alarm
is triggered, the VS procedure can suggest potential
out-of-control variables automatically.

The integration of detection and diagnosis makes
the VS-MSPC charts appealing in reducing dimen-
sionality and improving control chart performance.
However, unlike the LEWMA chart, the VS-MSPC
chart is a Shewhart-type chart that uses the infor-
mation from only the current process observation. In
this article, we extend the VS-MSPC chart by us-
ing accumulated recent information for VS and pro-
cess monitoring. A multivariate EWMA procedure is
developed to accumulate recent observations, which
is expected to make mean estimation and VS more
accurate and, hence, benefit the control chart per-
formance. Unlike the method used in Zou and Qiu
(2009)’s method, the proposed scheme locates po-
tential out-of-control variables via a FVS algorithm,
which is popular in industrial quality control prac-
tice, and then deploys such information in the mon-
itoring statistics. The VS algorithm also suggests a
reduced subset of suspicious variables for further root
cause diagnosis.

The remainder of this paper is organized as fol-
lows. As a stepping-stone, we first give a brief re-
view of the VS-MSPC chart to motivate our new
variable-selection-based MEWMA (VS-MEWMA)
chart. Then we introduce the VS-MEWMA chart,
which uses accumulated information for both VS and
process monitoring. The statistical performance of
the proposed scheme is studied, followed by a dis-
cussion of properties and design issues of the pro-
posed control chart. A real example from a footwear
manufacturing process is presented to illustrate the
application of our method for fault detection and iso-
lation. Finally, the paper concludes with suggestions
for future research.

Review of the VS-Based
Multivariate Control Chart

In this section, we give a brief review of the VS-
MSPC chart proposed by Wang and Jiang (2009) to
motivate the VS-MEWMA chart. In essence, the VS-
MSPC chart is derived from a generalized likelihood

ratio (GLR) statistic for a hypothesis test. Let the
p-dimensional measurement vector at time t be rep-
resented by yt, which is centered (without loss of gen-
erality) by subtracting the in-control mean vector, so
that yt ⇠ Np(µt,⌃) with µt = 0p for t = 1, 2, . . . , ⌧
and µt 6= 0p for = ⌧ + 1, . . ., where ⌧ is unknown.
Using the sequential observations {yt}, our task is
to trigger an alarm when a mean change is detected
and suggest which of the monitored variables have
shifted.

We first consider testing the hypotheses H0:
µt = 0p and H1: µt 6= 0p. Using only the cur-
rent observation yt, negative two times the loga-
rithm of the generalized likelihood ratio is ⇤(yt) =
yT

t ⌃�1yt � minµt((yt � µt)T⌃�1(yt � µt)), which
is the Hotelling’s T 2 statistic (since the second term
is zero), and the corresponding control chart signals
when an upper control limit is exceeded.

Let

L0 = min
µt

((yt � µt)T⌃�1(yt � µt)). (1)

As the minimum of Equation (1) is achieved when
µt = yt, Hotelling’s T 2 statistic can be viewed as
using yt as an estimate of the true process mean
(Jiang and Tsui (2008)). However, in general, yt is
not the best estimator for µt at step t. When more
observations, yt,yt�1,yt�2, . . ., are available, the av-
erage or weighted average of these observations could
be a better estimate than yt alone. Another op-
portunity for improvement is based on the obser-
vation that many special causes do not shift all of
the variables being monitored. Instead, a common
phenomenon observed in practice is that a subset of
variables, which is dominated by a common latent
physical mechanism or component, deviates from its
normal condition due to abnormal changes in a com-
mon mechanism or component (Mastrangelo et al.
(1996), Choi et al. (2006)). Therefore, we can infer
that components of the vector µt that are estimated
to be close to zero are in fact zero.

In order to identify the components that are signif-
icant in the process mean estimate, Wang and Jiang
(2009) proposed to modify the optimization in Equa-
tion (1) by limiting the total number of nonzero el-
ements in µt, which corresponds to the number of
suspicious out-of-control variables; that is,8>><

>>:
min
µt

((yt � µt)T⌃�1(yt � µt))

s.t.
X

j

I(|µt(j)| 6= 0)  s,
(2)
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where s is a prescribed integer upper bound on the
number of nonzero coe�cients; µt(j) is the jth ele-
ment of vector µt and I(|µt(j)| 6= 0) is an indicator
function that takes 1 when |µt(j)| 6= 0 and 0 other-
wise. Let ⌃�1 = RTR be the Cholesky decompo-
sition of ⌃�1 and zt = Ryt. Equation (2) can be
equivalently expressed as the following constrained
least square estimation problem:8>><

>>:
min
µt

((zt �Rµt)T(zt �Rµt))

s.t.
X

j

I(|µj | 6= 0)  s,
(3)

where R can be regarded as a design matrix and zt

as a response variable. This constrained optimization
causes estimated coe�cients that are close to zero in
the regression model to be set to exactly zero.

Let µ⇤t denote the solution to Equation (3) (which
depends on the parameter s). Generically, we assume
that only those variables with nonzero coe�cients are
potential out-of-control variables and will be moni-
tored for possible process shifts. Although this as-
sumption may not hold all the time in practice, es-
pecially when s is chosen unwisely small, it holds po-
tential for productive dimensionality reduction and
thereby improved detection sensitivity by identify-
ing a set of variables with the greatest information
about a potential shift.

Wang and Jiang (2009) adopted the FVS algo-
rithm to find µ⇤t , the solution for Equation (3). A
VS-MSPC chart is developed by substituting the es-
timated µ⇤t into Equation (1) as follows:

⇤(yt) = 2yt⌃�1µ⇤t � µ⇤Tt ⌃�1µ⇤t ,

which signals when the upper control limit is ex-
ceeded. Appendix A further shows that monitoring
this statistic is equivalent to monitoring

⇤1(yt) = yT
t ⌃�1µ⇤t , (4)

which is the inner product of the current observation
yt and the constrained mean estimate µ⇤t with re-
spect to the variance-covariance matrix ⌃. In fact,
if s = p, with all variables selected in Equation
(3), then ⇤(yt) and ⇤1(yt) reduce to Hotelling’s T 2

statistic. If s < p, intuitively, ⇤1(yt) measures a kind
of “match” or “agreement” between the observation
and the constrained mean estimate.

A VS-MEWMA Chart

The previous section illustrates the principle of
the VS-MSPC chart. Although the FVS procedure is

used to narrow down the set of variables with sus-
pected mean shifts, the observations are random and
subject to noise so that an estimate of µt based on
only one observation can be unreliable. We now mod-
ify the objective function in Equation (3) and pro-
pose a new way to estimate the process mean. On one
hand, using the information from several recent ob-
servations may benefit the estimation accuracy. On
the other hand, observations too ancient may not
accurately represent the current status of a process
since the process may have changed. Therefore, a rea-
sonable treatment is to put more emphasis on recent
data and give less weight to older data, which leads
to an EWMA-based VS method.

VS via Exponential Smoothing

As shown in Table 1, we propose to discount ob-
servations in an exponentially decaying way by a fac-
tor of !i = �(1 � �)t�i

.Pt
j=1 �(1 � �)t�j , where

0 < �  1 is the smoothing parameter. Based on the
weighting scheme, we modify Equation (3) as follows:

8>>><
>>>:

min
µt

 
tX

i=0

!i(zi �Rµt)T(zi �Rµt)

!

s.t.
X

j

I(|µt(j)| 6= 0)  s,
(5)

It should be noted that the added constraint or
penalty in Equation (5) is one of the options one
may consider for VS. Using an L1-type penalty in-
stead gives the LASSO algorithm of Zou and Qiu
(2009).

Equation (5) can be expressed in a recursive form.
Let

wt = (1� �)wt�1 + �yt, (6)

with w0 = 0p. Appendix B shows that, when t!1,
the solution of Equation (5) is equivalent to the solu-

TABLE 1. Weight Allocation of Recent Data for
Variable Selection and Shift Estimation

Time Response Covariate Weight

t zt R !t

t� 1 zt�1 R !t�1

t� 2 zt�2 R !t�2

...
...

...
...
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tion of the following objective function:8>><
>>:

min
µt

((wt � µt)T⌃�1(wt � µt))

s.t.
X

j

I(|µt(j)| 6= 0)  s,
(7)

That is, we can simply accumulate observations in an
EWMA and obtain µ⇤t by minimizing Equation (7);
the solution could be viewed as the best match with
the running, weighted average of the observations.

In solving Equation (7), without considering sta-
tistical significance, increasing the number of nonzero
coe�cients decreases the objective function, so that
the constraint imposed by the choice of s is al-
ways binding. Therefore, we fix the total number of
nonzero variables and search for the optimal value
of µt using an algorithm that resembles the usual
FVS procedure. We first select one variable from all
p candidates to minimize Equation (7), and then by
fixing the first chosen variable we search for the sec-
ond variable, together with preceding selection(s), to
minimize Equation (7). The selection procedure is re-
peated until s variables are selected. Detailed steps
are outlined in Appendix B. By limiting the num-
ber of selection steps, it is guaranteed that s nonzero
coe�cients are attained in µ⇤t .

Solving Equation (7) is expected to give a more ro-
bust estimate of process mean than solving Equation
(3), since the former takes recent information into
consideration and reduces the randomness. Charting
statistics developed based on µ⇤t are also expected to
be more powerful in detecting shifts.

A VS-MEWMA Chart

The solution, µ⇤t , obtained from the above pro-
cedure can be viewed as a more robust and reliable
estimate of the process mean. Once it is obtained,
we can plug it into Equation (4) and evaluate its
“agreement” with process observations. However, in
Equation (4), yt only contains information from the
latest observation. In order to further improve sen-
sitivity of the VS-MSPC method to small changes,
more observations could be accumulated and incor-
porated into the monitoring statistics of yt in Equa-
tion (4). Therefore, we use the EWMA statistic wt to
replace yt in Equation (4), and obtain the following
VS-MEWMA statistic:

Mt = µ⇤Tt ⌃�1wt. (8)

The corresponding chart signals when Mt > c, an
upper control limit chosen for desired performance.

As the above statistic Mt integrates VS into a
directional MEWMA chart, we name this chart a
VS-MEWMA chart. It should be noted that the
VS-MEWMA chart inherits the diagnostic capability
of the VS-MSPC chart. Whenever an out-of-control
alarm is triggered, it is natural to use the variables
having nonzero coe�cients as the basis for further
identification of root causes.

Zou and Tsung (2008) introduced a directional
MEWMA chart for monitoring multistage processes.
In their directional MEWMA chart statistic, prior
knowledge of the shift direction and exponentially
smoothed observations are combined to improve the
performance for fault detection. However, the con-
trol chart defined in Equation (8) does not require
any prior information about process shifts or their
directions. Our experiments have also shown that in-
corporating the estimated shift µ⇤t rather than the
estimated shift direction further improves shift de-
tection.

Comparison with the LEWMA Chart

The VS-MEWMA chart is similar to the LEWMA
chart proposed by Zou and Qiu (2009). The LEWMA
chart also starts from the EWMA statistic, wt. At
step t, it calculates q LASSO estimators µ̂t,�̃

mlast
k

,

k = 1, 2, . . . , q, that minimize Equation (7) with the
L0 penalty replaced by a L1-type adaptive LASSO
penalty. The LEWMA chart signals when

Qt = max
k=1,...,q

Wt,�̃
mlast

k

�E

✓
Wt,�̃

mlast
k

◆
s

Var
✓

Wt,�̃
mlast

k

◆ > c0, (9)

where, asymptotically,

Wt,� =
2� �

�

�
yT

t ⌃�1µ̂�

�2
µ̂T

� ⌃�1µ̂�
.

The parameter q is critical to the algorithm; it spec-
ifies the number of alternatives to test at each step.
Details about the LEWMA chart can be found in
Zou and Qiu (2009).

Both LEWMA and VS-MEWMA charts use the
EWMA statistic for VS and a MEWMA-type chart-
ing statistic for detecting process shifts. However,
apart from di↵erent penalty functions and corre-
sponding algorithms considered in VS, there are two
major di↵erences between them:

(a) The LEWMA chart uses a data-driven method
to search along the VS path for potential out-

Vol. 44, No. 3, July 2012 www.asq.org



mss # 1498.tex; art. # 00; 44(3)

214 WEI JIANG, KAIBO WANG, AND FUGEE TSUNG

of-control variables; the critical value, q, lim-
its the maximum number of potential out-of-
control variables. However, the VS-MEWMA
chart uses a fixed number of potential out-
of-control variables. (Its robustness against
parameter misspecification will be presented
later.) Therefore, the LEWMA chart is suitable
for cases without any shift information or with
little knowledge of shift patterns, while the VS-
MEWMA chart is expected to be suitable for
cases with better understanding of the number
of potential out-of-control variables. If the VS-
MEWMA is extended to include maximally s
values at each step, the two charts may be simi-
lar. Since LEWMA involves a complicated algo-
rithm and pursues an exhaustive search among
q alternatives along the VS path, the form of
the VS-MEWMA chart statistic may look sim-
pler to practitioners and be less complex to im-
plement.

(b) The LEWMA chart monitors the maximum
of q standardized statistics Wt,�̃

mlast
k

(k =

1, 2, . . . , q), where the mean and standard de-
viation of Wt,�̃

mlast
k

are calculated from numer-
ically simulated data. However, the distribu-
tion of the standardized statistic is not iden-
tical for all k = 1, 2, . . . , q, especially with re-
spect to the right-side tail probability; this may
result in a suboptimal allocation of the over-
all false alarm rate when simultaneously mon-
itoring the q standardized statistics. The VS-
MEWMA chart does not have this issue, since
only one statistic is monitored. The perfor-
mance of these two charts will be compared in
later sections.

Performance Analysis
of the VS-MEWMA Chart

With the VS-MEWMA chart, the smoothing pa-
rameter, �, determines the weight to be assigned
to recent observations for mean estimation. A small
value of � makes the estimation of µ⇤t more stable,
so that the selection of potential out-of-control com-
ponents will not change as often as new observations
arrive when the process is in control. On the other
hand, a large value of � causes µ⇤t to be updated
quickly by assigning more weight to recent observa-
tions, but the selection of variables becomes less sta-
ble when the process is in control. In the following,
we shall study the e↵ect of � on the properties of the
proposed control charts.

We first demonstrate the performance of the VS
algorithm for correctly identifying shifted variables.
Then we discuss the fault diagnostic capability of the
control chart when an out-of-control signal is trig-
gered. Finally, we compare the average run length
(ARL) performance of the proposed method with
conventional MEWMA charts and Hotelling’s T 2

chart and discuss the robustness of the proposed
methods against the selection of the parameter s.

In the simulation studies, the dimension p takes
values of 10 and 50 to represent medium and high
dimensions of a process, respectively. For simplicity,
we used 0p and Ip⇥p as the in-control mean vector
and covariance matrix in the simulation. Although
transformation of correlated variables to independent
components has been extensively studied (see, e.g.,
Huwang et al. (2007), Gonzalez and Sanchez (2008),
Hawkins and Maboudou-Tchao (2008), Wang and
Jiang (2009), Chenouri et al. (2009)), the proposed
VS-MEWMA is capable of monitoring processes with
correlated variables without transformation. Exam-
ples with general variance-covariance matrices will
be studied in later sections. We further assume that
when a shift in one or more means occurs, it equally
a↵ects the level of all of the shifted variables. The
number of shifted variables is denoted by p0. With-
out any loss of generality, we apply the shift to the
first p0 variables. Therefore, for p0 = 2, for example,
yt ⇠ Np([�, �, 0, . . . , 0]T, I) when the process is out-
of-control. In this analysis, unless otherwise stated,
the in-control ARL (denoted by ARL0) is 200 and
the simulation results are based on 10,000 replica-
tions for each value shown.

Performance of the VS Algorithm

From the EWMA statistic in Equation (6), we ex-
pect that the smoothing parameter � would signifi-
cantly a↵ect the way that the VS works. Therefore,
we first study the stability of the VS-MEWMA chart
in capturing suspicious out-of-control variables using
di↵erent values of �. As a demonstration, a simulated
process with 50 variables is run for 100 steps with no
shift in the process mean vector. Further, we choose
s = p0 = 2. When using the algorithm in Equation
(6) to identify suspicious variables, Figure 1 shows
the indices of the two selected (nonzero) variables at
each step when � is set to di↵erent alternative values.

Figure 1(b) shows that, when � = 0.2, the same
variables persist as suspicious in successive steps
(when there has been no shift) due to the inertia of
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FIGURE 1. Stability of VS-MEWMA in Selecting Suspicious Variables (when there is no shift). (left) � = 1.0; (right) �
= 0.2.

the EWMA statistics. This persistence e↵ect would
become stronger as � becomes smaller.

In order to demonstrate the capability of the VS
algorithm in identifying which variables have shifted,
we add a shift of magnitude 1.0 to the first two vari-
ables, starting from the first step, and draw simi-
lar plots in Figure 2. When � = 1.0, the selected
suspicious variables are often di↵erent from the true
shifted variables, although the shifted variables are
slightly more frequently identified. With a small shift
size and a comparatively large value for �, the algo-
rithm is prone to incorrectly identify the shifted vari-
ables (Wang and Jiang (2009)). When � decreases,
the probability that the shifted variables are iden-
tified is improved. For example, when � = 0.2, the
shifted variables are correctly identified most of the
time.

Although using a small value of � could improve
the probability of correctly identifying the shifted
variables, that would (slightly) increase the ARL
with a large shift, compared with using a larger value

of � that would be optimal for the large shift. Figure
3 shows the same set of graphs when a mean shift of
magnitude 1.0 is introduced at the 41st step. When
� = 0.2, the VS algorithm first correctly identifies
the first shifted variable at step 47 and both shifted
variables at step 48. The delay in identifying the cor-
rect variables is due to the inertia of the EWMA
statistic. Before the change point, the algorithm may
pick up the wrong variables. When a shift happens at
step 41, the algorithm needs several steps to switch
the selection to the correct set since the most recent
information receives rather small weights. The iner-
tia would become smaller as � is increased and less
weight is assigned to recent observations, but the ac-
curacy of the identification of the shifted variables
would su↵er, as the case with � = 1.0 shows.

In summary, the smoothing parameter for VS, �,
is critical for maintaining the sensitivity as well as
the consistency of VS. A large value of � may ap-
pear to be desirable for a quick response to large
mean shifts but would result in a degraded accuracy

FIGURE 2. Stability of VS-MEWMA in Selecting Suspicious Variables (process shift of 1.0 in the 1st step). (left) � = 1.0;
(right) � = 0.2.
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FIGURE 3. Stability of VS-MEWMA in Selecting Suspicious Variables (with a sustained shift of 1.0 in the first two variables
beginning with step 41). (left) � = 1.0; (right) � = 0.2.

in identification of the shifted variables. In general, a
trade-o↵ is necessary in selecting appropriate � val-
ues to balance quick response and accuracy. This also
agrees with the property of the conventional EWMA
statistics in process monitoring and control (Lucas
and Saccucci (1990)).

Performance of Out-of-Control Variable
Identification

The above study demonstrates the accuracy of the
VS algorithm in identifying the correct variables for
monitoring purposes (pre-signal). We now investigate
the capability of the algorithm in identifying the cor-
rect variables after a signal. Let p0 be the actual
number of variables shifted in a process and ⌧ be
the change point (the first shifted observation). In
the following, we simulated a process with p = 10,
p0 = 2, ⌧ = 100, and 200 replicates. Simulated runs
with a signal before the change point were ignored.
We calculated the probability of correct identification
after a valid signal, denoted by Pc, by counting the
proportion of times that the shifted variables were
correctly identified using s = 2. The two shifted vari-
ables are treated as two opportunities for detection.
If only one of the two shifted variables is correctly
identified, the probability is treated as 50%. The re-
sults are reported in Table 2.

First, a general pattern can be observed; i.e., when
the shift magnitude increases, Pc increases accord-
ingly. For most of the cases, Pc is higher than 80%
when � � 1.5. Although this result might be ex-
pected, it is not trivial. Since large shifts are identi-
fied more quickly, there are fewer out-of-control ob-
servations available for diagnostic analysis. Thus, it
is reasonable but not obvious that the identification
probability would improve. Second, for each shift
magnitude, there seems to exist an optimal �, �⇤,

that achieves the highest Pc. In addition, �⇤ is gener-
ally smaller for small shifts and larger for large shifts.
This shows that for small shifts, a small � is helpful
in accumulating more recent information, hence cap-
turing shift information more accurately. For a large
shift, since the corresponding run length is usually
short, a large value of � makes the VS procedure
more sensitive and accurate in capturing shifts in a
short period of time.

ARL Performance Study and Comparison
with Existing Methods

In this study, we simulate 10- and 50-dimensional
processes with p0 = 2, that is,

yt ⇠ Np([�, �, 0, . . . , 0]T, I)

when the process is out-of-control. Since the VS-
MEWMA chart is inevitably influenced by the val-
ues used for the smoothing parameters, for certain
choices of � the inertia in Equations (5) and (8) could
be important. Therefore, the steady-state ARL with

TABLE 2. Probability of Correct Identification After
a Valid Signal (p = 10, p0 = 2, s = 2, ARL0 = 200)

Pc (%)

� � = 0.05 0.1 0.2 0.4

0.2 47.0 37.5 32.5 26.5
0.6 67.3 66.8 68.3 54.3
1.0 78.0 82.5 82.0 74.0
1.5 79.8 87.8 84.5 84.0
2.0 86.0 86.0 91.8 87.3
3.0 85.8 88.0 90.8 93.3
4.0 88.5 92.0 92.3 94.0
5.0 89.3 91.3 94.5 97.5
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a burn-in length of 100 steps (shifts were added at
the 101st step) was used for evaluating control chart
performance. Each ARL was calculated using 10,000
replicates. The in-control ARL was set to 200 for all
charts; the out-of-control ARL’s and corresponding
standard deviations of run lengths (SDRLs) were as
shown in Table 3 and Table 4.

As Hotelling’s T 2 chart is popular for general-
purpose multivariate process monitoring and the
MEWMA chart is known for its sensitivity in detect-
ing small-shift, we also studied the ARL performance
of Hotelling’s T 2 and MEWMA charts and compared
them with the VS-MEWMA chart (Hotelling’s T 2

chart is shown as a MEWMA chart with � = 1.0 in
the tables). The VS-MSPC chart proposed by Wang
and Jiang (2009) can be seen as a special case of the
VS-MEWMA chart with � = 1.0; its performance is
also shown in the tables.

As we are studying a process with all variables
having unit variance and independence with each
other, it is natural to monitor these variables us-
ing multiple univariate EWMA charts (denoted by
Multi-EWMA chart). Each variable is monitored by
an individual EWMA chart with all charts using the
same values of the smoothing parameter � and con-
trol limits. The Multi-EWMA chart signals if any
individual chart goes out-of-control. The in-control
ARLs of all the individual charts are the same,
with the overall in-control ARL of the Multi-EWMA
chart adjusted to be 200. The idea of using multi-
ple univariate charts has been explored by some re-
searchers. Pignatiello and Runger (1990) compared
MCUSUM with multiple univariate CUSUM charts
and pointed out that performance of the multiple
univariate scheme depends on the manner in which
the process mean shifts. This happens since each
CUSUM chart is optimally designed for a particular
shift only. Han et al. (2007) also proposed a di↵erent
multichart scheme with multiple CUSUM or EWMA
charts; each chart is designed for a specific shift size;
the whole multichart scheme is designed for detect-
ing a range of shifts. In the following study, we also
report the performance of Multi-EWMA charts when
applied to the simulated processes.

In Table 3 and Table 4, the smallest ARL value of
each row is shown in bold, showing that the � value
that achieves the lowest ARL value increases with
�. This is a typical feature of EWMA-type control
charts, that a small value for � is helpful in accumu-
lating recent information and therefore increases the

sensitivity to small shifts. In general, for a specified
shift size and in-control ARL, there is an optimal
choice of � that minimizes the out-of-control ARL
(Lucas and Saccucci (1990)).

We now compare the VS-MEWMA chart with
the conventional MEWMA chart. When p = 10 and
s = p0 = 2, Table 3 shows that, for a given � value
that is not too small, the VS-MEWMA chart with
its optimal value for � typically achieves a smaller
out-of-control ARL than the MEWMA chart with
its (di↵erent) optimal value for �, as would be ex-
pected. The apparent exceptions for small values of
� (0.2, 0.4, and 0.6) may be due to two reasons. First,
the choice of values for � to display in the table is
limited. For example, with � = 0.4 and � = 0.05,
the ARL for both charts is 32.3. When � is further
decreased, the performance of both charts improves
(results not shown here), and the VS-MEWMA chart
may become slightly better than MEWMA. Second,
when shift magnitude is too small, the probability
of correct identification of shifted variables is low,
which inevitably hurts the performance of the VS-
MEWMA.

When p = 50, a similar pattern is exhibited except
that the multiple univariate EWMA chart is slightly
better than MEWMA for shifts with � > 4.0; but the
VS-MEWMA chart is still superior to the multiple
univariate EWMA chart in most cases.

If the VS-MEWMA chart uses � = 1.0, which
means only the most recent observation is used for
VS and monitoring, the chart reduces to the VS-
MSPC chart proposed by Wang and Jiang (2009).
The MEWMA chart with � = 1.0 reduces to
Hotelling’s T 2 chart, and the multiple univariate
EWMA scheme reduces to a multiple Shewhart
chart. Table 3 and Table 4 show that the VS-
MEWMA chart with � = 1.0 performs worse than
the VS-MEWMA chart with � < 1.0 for small shifts
in most cases. This shows that the VS procedure us-
ing more than the most recent observation plays an
important role in improving the performance in de-
tecting small process changes. The tables also show
that the VS-MEWMA chart with � = 1.0 performs
slightly worse than the MEWMA chart with � = 1.0
for small shifts. This may be due to the lack of identi-
fication accuracy with small shifts and large � for the
VS-MEWMA chart. In summary, among the three
charts, the VS-MEWMA chart is superior for detect-
ing a wide range of moderate and large shifts and the
MEWMA chart is the best for detecting small shifts.
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TABLE 3. Steady-State ARL (SDRL) for p = 10 and ARL0 = 200

� � = 0.05 0.1 0.2 0.4 0.8 1.0

VS-MEWMA (s = p0 = 2)

0.2 86.2 (76.0) 106 (101) 132 (130) 160 (159) 184 (183) 188 (191)
0.4 32.3 (20.7) 37.8 (29.6) 54.9 (49.5) 89.7 (87.4) 142 (143) 158 (160)
0.6 18.5 (9.47) 18.7 (11.1) 23.7 (18.4) 42.8 (40.3) 94.0 (94.2) 118 (118)
0.8 12.8 (5.75) 11.8 (5.87) 12.9 (8.35) 20.6 (17.6) 56.7 (55.2) 80.6 (80.6)
1.0 9.85 (4.07) 8.64 (3.74) 8.46 (4.57) 11.8 (9.18) 33.1 (31.9) 52.0 (51.9)
1.5 6.30 (2.29) 5.20 (1.86) 4.54 (1.82) 4.63 (2.50) 9.44 (8.43) 16.6 (16.1)
2.0 4.67 (1.57) 3.82 (1.23) 3.17 (1.07) 2.85 (1.17) 3.72 (2.72) 5.85 (5.33)
2.5 3.79 (1.21) 3.04 (0.93) 2.49 (0.77) 2.10 (0.74) 2.11 (1.20) 2.61 (2.08)
3.0 3.19 (0.99) 2.57 (0.76) 2.09 (0.60) 1.72 (0.57) 1.48 (0.67) 1.57 (0.94)
3.5 2.76 (0.84) 2.23 (0.64) 1.83 (0.53) 1.46 (0.51) 1.18 (0.41) 1.17 (0.45)
4.0 2.48 (0.75) 2.01 (0.56) 1.63 (0.50) 1.25 (0.44) 1.05 (0.23) 1.05 (0.22)
4.5 2.25 (0.67) 1.84 (0.51) 1.47 (0.50) 1.11 (0.32) 1.01 (0.11) 1.01 (0.09)
5.0 2.07 (0.60) 1.71 (0.49) 1.32 (0.47) 1.04 (0.20) 1.00 (0.04) 1.00 (0.04)

MEWMA

0.2 83.0 (73.5) 102 (97.1) 127 (126) 156 (154) 178 (177) 188 (184)
0.4 32.3 (21.4) 37.4 (29.6) 52.9 (48.2) 83.5 (79.9) 135 (134) 155 (152)
0.6 18.4 (9.78) 18.8 (11.8) 23.6 (18.7) 41.3 (38.5) 90.1 (89.8) 115 (114)
0.8 12.9 (6.13) 12.1 (6.29) 13.2 (8.66) 21.2 (18.4) 55.2 (53.6) 79.3 (78.6)
1.0 9.98 (4.29) 8.85 (4.01) 8.84 (4.85) 12.1 (9.45) 33.1 (32.2) 52.0 (51.2)
1.5 6.36 (2.37) 5.37 (2.00) 4.69 (1.93) 4.87 (2.70) 9.92 (8.90) 17.4 (17.0)
2.0 4.77 (1.68) 3.93 (1.34) 3.29 (1.18) 2.95 (1.26) 4.07 (3.07) 6.49 (5.94)
2.5 3.80 (1.30) 3.15 (0.99) 2.58 (0.82) 2.20 (0.79) 2.29 (1.36) 2.93 (2.39)
3.0 3.2 (1.06) 2.63 (0.80) 2.15 (0.65) 1.80 (0.60) 1.58 (0.76) 1.73 (1.14)
3.5 2.81 (0.89) 2.30 (0.69) 1.87 (0.55) 1.52 (0.53) 1.24 (0.48) 1.25 (0.56)
4.0 2.51 (0.79) 2.05 (0.59) 1.68 (0.51) 1.33 (0.47) 1.08 (0.28) 1.07 (0.28)
4.5 2.28 (0.70) 1.87 (0.53) 1.53 (0.50) 1.16 (0.36) 1.02 (0.14) 1.02 (0.13)
5.0 2.09 (0.63) 1.73 (0.50) 1.38 (0.49) 1.07 (0.25) 1.00 (0.05) 1.00 (0.05)

Multiple Univariate EWMA (Multi-EWMA)

0.2 89.8 (79.1) 112 (107) 138 (138) 165 (165) 184 (184) 191 (190)
0.4 34.4 (22.2) 40.3 (31.7) 59.4 (54.2) 95.9 (95.1) 148 (147) 164 (162)
0.6 19.6 (10.0) 20.0 (12.5) 26.1 (20.9) 47.5 (44.8) 102 (101) 126 (125)
0.8 13.5 (6.08) 12.8 (6.50) 14.2 (9.53) 23.7 (21.0) 63.8 (62.0) 90.5 (89.6)
1.0 10.5 (4.32) 9.31 (4.16) 9.26 (5.07) 13.5 (10.7) 37.7 (36.9) 60.3 (59.5)
1.5 6.68 (2.47) 5.60 (2.06) 4.89 (1.99) 5.25 (2.97) 11.2 (10.1) 20.0 (19.5)
2.0 4.95 (1.70) 4.06 (1.36) 3.44 (1.21) 3.12 (1.35) 4.52 (3.43) 7.47 (6.95)
2.5 3.99 (1.29) 3.25 (1.02) 2.67 (0.84) 2.29 (0.84) 2.47 (1.51) 3.32 (2.74)
3.0 3.36 (1.06) 2.72 (0.82) 2.22 (0.67) 1.86 (0.63) 1.68 (0.85) 1.91 (1.34)
3.5 2.92 (0.90) 2.37 (0.70) 1.94 (0.56) 1.57 (0.54) 1.30 (0.53) 1.32 (0.65)
4.0 2.61 (0.78) 2.12 (0.61) 1.73 (0.50) 1.37 (0.49) 1.11 (0.33) 1.10 (0.33)
4.5 2.36 (0.70) 1.93 (0.54) 1.57 (0.51) 1.20 (0.40) 1.03 (0.17) 1.02 (0.16)
5.0 2.16 (0.64) 1.79 (0.49) 1.42 (0.49) 1.09 (0.28) 1.01 (0.08) 1.01 (0.07)
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TABLE 4. Steady-State ARL (SDRL) for p = 50 and ARL0 = 200

� � = 0.05 0.1 0.2 0.4 0.8 1.0

VS-MEWMA (s = p0 = 2)

0.2 125 (119) 151 (147) 174 (173) 187 (188) 195 (196) 197 (195)
0.4 46.8 (32.2) 62.9 (53.8) 99.9 (95.1) 145 (144) 178 (179) 185 (183)
0.6 24.7 (12.7) 27.3 (17.8) 43.2 (37.1) 87.1 (85.0) 149 (152) 166 (166)
0.8 16.6 (7.17) 16.1 (8.22) 20.6 (14.7) 44.0 (41.0) 113 (115) 140 (140)
1.0 12.4 (4.76) 11.2 (4.79) 12.2 (7.03) 22.2 (19.1) 77.3 (76.5) 110 (108)
1.5 7.76 (2.54) 6.45 (2.17) 5.80 (2.30) 6.84 (4.18) 22.0 (21.1) 43.5 (43.3)
2.0 5.69 (1.73) 4.60 (1.38) 3.85 (1.24) 3.68 (1.59) 7.00 (5.77) 14.2 (13.9)
2.5 4.56 (1.31) 3.61 (1.01) 2.98 (0.87) 2.57 (0.89) 3.24 (2.14) 5.32 (4.81)
3.0 3.81 (1.05) 3.04 (0.81) 2.44 (0.67) 2.02 (0.62) 1.96 (1.02) 2.50 (1.91)
3.5 3.31 (0.90) 2.63 (0.68) 2.10 (0.54) 1.73 (0.53) 1.44 (0.62) 1.52 (0.89)
4.0 2.93 (0.77) 2.33 (0.60) 1.87 (0.47) 1.49 (0.51) 1.17 (0.40) 1.16 (0.44)
4.5 2.66 (0.69) 2.11 (0.52) 1.72 (0.47) 1.29 (0.45) 1.05 (0.22) 1.04 (0.21)
5.0 2.42 (0.64) 1.94 (0.46) 1.58 (0.50) 1.14 (0.34) 1.01 (0.11) 1.01 (0.08)

MEWMA

0.2 120 (115) 145 (142) 164 (163) 181 (181) 192 (191) 196 (195)
0.4 53.3 (41.1) 69.4 (61.8) 99.5 (97.4) 136 (138) 171 (169) 181 (181)
0.6 29.2 (17.4) 34.3 (25.6) 51.7 (47.5) 89.3 (87.9) 140 (138) 159 (160)
0.8 19.7 (9.76) 20.4 (12.2) 28.0 (22.7) 53.2 (50.3) 110 (108) 132 (134)
1.0 14.7 (6.56) 14.2 (7.08) 16.9 (11.6) 32.0 (29.2) 81.2 (81.1) 106 (108)
1.5 9.17 (3.47) 7.93 (3.10) 7.63 (3.58) 10.5 (7.64) 33.3 (32.5) 53.4 (52.8)
2.0 6.65 (2.30) 5.59 (1.90) 4.91 (1.82) 5.24 (2.81) 13.1 (12.1) 24.6 (24.4)
2.5 5.27 (1.74) 4.35 (1.34) 3.65 (1.20) 3.42 (1.41) 6.00 (4.88) 11.2 (10.6)
3.0 4.39 (1.39) 3.58 (1.05) 2.97 (0.90) 2.58 (0.92) 3.30 (2.21) 5.38 (4.87)
3.5 3.80 (1.16) 3.10 (0.89) 2.52 (0.73) 2.12 (0.67) 2.16 (1.15) 2.92 (2.34)
4.0 3.35 (1.01) 2.70 (0.75) 2.20 (0.61) 1.83 (0.56) 1.62 (0.74) 1.85 (1.28)
4.5 3.02 (0.88) 2.44 (0.67) 1.97 (0.50) 1.63 (0.52) 1.31 (0.52) 1.35 (0.69)
5.0 2.74 (0.79) 2.23 (0.60) 1.83 (0.47) 1.44 (0.50) 1.14 (0.36) 1.13 (0.38)

Multiple Univariate EWMA (Multi-EWMA)

0.2 132 (123) 158 (156) 178 (174) 190 (191) 195 (195) 198 (197)
0.4 49.1 (34.5) 67.4 (57.1) 106 (101) 151 (149) 182 (183) 189 (190)
0.6 25.7 (13.6) 29.1 (19.8) 46.9 (40.9) 94.7 (92.1) 155 (156) 172 (172)
0.8 17.3 (7.48) 16.8 (8.84) 22.1 (16.4) 47.3 (44.2) 120 (119) 146 (144)
1.0 12.9 (5.05) 11.7 (5.10) 13.1 (7.95) 24.4 (21.4) 82.0 (81.4) 115 (113)
1.5 8.07 (2.73) 6.76 (2.33) 6.16 (2.52) 7.41 (4.62) 24.6 (22.9) 47.0 (46.7)
2.0 5.93 (1.86) 4.80 (1.48) 4.07 (1.36) 3.94 (1.77) 8.09 (7.01) 16.3 (15.7)
2.5 4.70 (1.36) 3.79 (1.09) 3.10 (0.92) 2.73 (1.00) 3.68 (2.54) 6.13 (5.68)
3.0 3.94 (1.13) 3.16 (0.87) 2.56 (0.72) 2.15 (0.69) 2.19 (1.23) 2.98 (2.46)
3.5 3.41 (0.93) 2.72 (0.73) 2.19 (0.59) 1.81 (0.55) 1.58 (0.74) 1.74 (1.11)
4.0 3.03 (0.81) 2.42 (0.63) 1.94 (0.49) 1.57 (0.52) 1.26 (0.48) 1.26 (0.57)
4.5 2.72 (0.73) 2.18 (0.56) 1.77 (0.47) 1.37 (0.49) 1.09 (0.30) 1.08 (0.29)
5.0 2.50 (0.66) 2.00 (0.50) 1.64 (0.49) 1.21 (0.40) 1.02 (0.16) 1.02 (0.14)
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TABLE 5. Zero-State ARL Comparison

MEWMA VS-MEWMA

� � = 0.1 0.2 0.4 0.1 0.2 0.4

p = 10

0.2 105 (94.2) 131 (124) 157 (153) 107 (95.6) 135 (129) 160 (157)
0.4 39.5 (28.1) 54.8 (48.7) 86.6 (82.3) 39.5 (27.7) 56.8 (49.8) 90.7 (87.9)
0.6 20.5 (11.0) 24.9 (18.6) 42.3 (39.4) 19.7 (10.3) 24.4 (18.4) 43.1 (40.4)
0.8 13.4 (5.49) 14.0 (8.34) 21.6 (18.3) 12.6 (5.24) 13.5 (8.04) 21.2 (18.1)
1.0 9.93 (3.36) 9.38 (4.66) 12.5 (9.40) 9.25 (3.23) 8.92 (4.35) 11.9 (8.83)
1.5 6.14 (1.49) 5.17 (1.70) 5.11 (2.58) 5.60 (1.43) 4.82 (1.61) 4.81 (2.47)
2.0 4.53 (0.90) 3.64 (0.94) 3.18 (1.18) 4.09 (0.87) 3.35 (0.89) 2.95 (1.10)
2.5 3.64 (0.65) 2.87 (0.65) 2.38 (0.69) 3.25 (0.60) 2.61 (0.62) 2.21 (0.65)
3.0 3.09 (0.47) 2.40 (0.52) 1.96 (0.49) 2.74 (0.52) 2.19 (0.43) 1.81 (0.52)
3.5 2.71 (0.48) 2.09 (0.32) 1.69 (0.49) 2.32 (0.47) 1.98 (0.29) 1.50 (0.51)
4.0 2.34 (0.47) 1.98 (0.22) 1.43 (0.50) 2.07 (0.26) 1.82 (0.39) 1.24 (0.43)
4.5 2.08 (0.26) 1.88 (0.33) 1.20 (0.40) 2.00 (0.12) 1.58 (0.49) 1.08 (0.27)
5.0 2.01 (0.09) 1.69 (0.46) 1.06 (0.24) 1.96 (0.20) 1.31 (0.46) 1.02 (0.14)

p = 50

0.2 147 (133) 164 (158) 180 (179) 152 (137) 173 (167) 186 (183)
0.4 73.4 (58.9) 102 (95.2) 136 (136) 65.7 (52.0) 101 (92.7) 146 (141)
0.6 37.8 (24.0) 54.0 (47.2) 88.9 (86.5) 29.3 (17.3) 44.0 (36.5) 86.8 (83.4)
0.8 23.3 (11.1) 29.7 (22.4) 54.8 (51.7) 17.3 (7.51) 21.4 (14.5) 43.8 (40.5)
1.0 16.6 (6.06) 18.2 (11.2) 32.6 (28.9) 12.2 (4.27) 12.9 (6.98) 22.7 (19.1)
1.5 9.90 (2.30) 8.65 (3.22) 11.0 (7.36) 6.96 (1.70) 6.16 (2.10) 7.04 (4.02)
2.0 7.27 (1.30) 5.79 (1.51) 5.65 (2.62) 4.94 (0.99) 4.09 (1.06) 3.79 (1.51)
2.5 5.81 (0.86) 4.47 (0.92) 3.82 (1.31) 3.86 (0.69) 3.13 (0.70) 2.67 (0.82)
3.0 4.89 (0.66) 3.70 (0.67) 2.94 (0.81) 3.22 (0.51) 2.56 (0.56) 2.14 (0.52)
3.5 4.24 (0.51) 3.20 (0.48) 2.43 (0.57) 2.82 (0.46) 2.17 (0.39) 1.84 (0.45)
4.0 3.81 (0.47) 2.87 (0.42) 2.14 (0.38) 2.42 (0.50) 2.01 (0.22) 1.56 (0.50)
4.5 3.36 (0.48) 2.56 (0.50) 2.00 (0.25) 2.11 (0.31) 1.92 (0.27) 1.30 (0.46)
5.0 3.07 (0.26) 2.23 (0.42) 1.91 (0.30) 2.01 (0.11) 1.75 (0.43) 1.11 (0.31)

Zero-State ARL Performance Study

For completeness, the zero-state ARL perfor-
mance of the VS-MEWMA chart with certain pa-
rameter combinations is also shown in Table 5 for
comparison with the MEWMA chart. The smallest
value within each row is highlighted in bold. The VS-
MEWMA chart usually outperforms the MEWMA
chart when � > 0.6 or 0.8 if p = 10. The margin be-
comes larger when p increases to 50. This shows that
the advantage of the VS-MEWMA chart is persistent
for both steady-state and zero-state ARL.

The di↵erence between the steady-state and zero-
state ARLs is mainly caused by the initial value used

in Equation (6). w0 usually takes the in-control mean
value of the process. If the process is out-of-control
(e.g., due to initial setup bias) at the first step, the
performance of both VS-MEWMA and MEWMA
charts will be a↵ected. For convenience, we here used
a constant control limit rather than time-varying lim-
its in the above simulations; this could be another
reason that makes the chart slow in detecting process
shifts present in the early observations. In practice,
time-varying control limits could be used, and the
design of univariate EWMA charts for fast initial re-
sponse can be adapted to the VS-MEWMA chart as
well (Montgomery (2005)). It should be noted that,
as reported in Stoumbos and Sullivan (2002), using
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time-varying control limits based on the exact co-
variance matrix of w0 makes the chart less robust to
distributions having high kurtosis.

Discussions

Dependent Variables and Comparison with
LEWMA

The preceding studies assume that process vari-
ables are independent. However, in many industrial
processes, the variables are correlated, and many
variables may shift as a result of a common cause. For
example, Apley and Lee (2010) proposed a model to
characterize variable patterns in autobody assembly,
where observed variables are linked with sources of
variations via a general matrix C. Depending on the
specific structure of C, shifts of one variable source
may lead to changes of multiple observed variables.
Similarly, in blind source separation (see, e.g., Apley
and Lee (2003), Shan and Apley (2008)), one source
of variation (or signal) may a↵ect multiple observable
variables. Hawkins (1991) discussed a process with
five correlated variables and di↵erent types of shift
patterns. Zou and Qiu (2009) analyzed this process
using their proposed LEWMA chart. In the follow-
ing, we use this example to discuss the performance
of the VS-MEWMA chart when monitoring depen-
dent variables.

The in-control covariance matrix of five dependent
variables, denoted by ⌃0, is

⌃0 =

0
BBB@

1.0000 0.1388 0.3496 0.0829 0.2652
0.1388 1.0000 0.7324 0.9130 0.6932
0.3496 0.7324 1.0000 0.6824 0.8214
0.0829 0.9130 0.6824 1.0000 0.7640
0.2652 0.6932 0.8214 0.7640 1.0000

1
CCCA

Similar to Hawkins (1991) and Zou and Qiu (2009),
twenty di↵erent types of hypothetical out-of-control
mean shift patterns, with µ1 = �, are added to the
process starting with step 25. The values of the ele-
ments of � are given in Table 6.

In the following, we apply the VS-MEWMA chart
to the simulated process and compare its perfor-
mance with the MEWMA chart and the LEWMA
chart. The corresponding ARLs are shown in Table 6.
For a fair comparison, we aligned our simulations set-
tings with those in Zou and Qiu (2009) in this study.
The in-control ARL is set to 500; each ARL is calcu-
lated from 20,000 replicates. The smallest ARL value
of each row is again highlighted in bold. The last col-
umn shows the actual number of shifted variables, p0,
in each row. Since the magnitudes of some shifts in

patterns 16–20 are very small, we count the number
of variables having shift magnitude larger than 0.01
and show them as the e↵ective p0 in parentheses.

Table 6 shows that for 18 of the 20 shift patterns
the smallest ARL values are achieved by the VS-
MEWMA, while the MEWMA chart is the best in
the other two cases. Specifically, for the first five shift
patterns (each having only one shifted variable), the
VS-MEWMA chart with s = 1 always gives the best
performance. For the 10 patterns having only two
shifted variables (patterns 6–15), the VS-MEWMA
chart with s = 2 gives the best performance in nearly
half of the cases. For shift patterns 16–20, the best
value for s is also close to the e↵ective value for p0.
Note that the LEWMA chart searches among subsets
including k = 1, 2, . . . , q variables, whereas the VS-
MEWMA chart searches only subsets that contain
exactly s variables.

Another important observation from Table 6 is
that the VS-MEWMA chart is at least as good as
the MEWMA chart (except for one case) if s > p0,
e.g., for the first five shift patterns when the VS-
MEWMA chart has s > 1 and for the shift patterns
6–15 when the VS-MEWMA chart has s > 2.

Overall, the VS-MEWMA chart has e↵ective per-
formance in monitoring mean shifts of this corre-
lated process. As would be expected, it usually has
the smallest out-of-control ARL if the parameter s is
close to p0. If s is misspecified, its performance may
be adversely a↵ected. In the following, we further
study the robustness of the chart against misspecifi-
cation of s.

This example shows that the VS-MEWMA chart
works well with processes with general covariance
matrices. Equation (7), with the decomposition
⌃�1 = RTR, shows that the VS-MEWMA chart
involves a variable transformation based on the
Cholesky decomposition and uses the transformed
variable in VS and monitoring. If that transforma-
tion does not identify the changed variable(s) cor-
rectly (which may be very likely, since identification
of variation patterns is a more complicated task than
a simple transformation), a single failure pattern may
result in shifts in multiple components. In such cases,
the performance of the VS-MEWMA chart could de-
teriorate. Nonetheless, if multiple sources of varia-
tions can be captured in a unified model such as lin-
ear regression to link the source of variations with
the observed variables, we expect that VS methods
may still be applicable to identify the true source of
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TABLE 6. ARL Performance Study of a Process with a General Covariance Matrix (ARL0 = 500, � = 0.2)

LEWMA VS-MEWMA
Pattern
Number �1 �2 �3 �4 �5 MEWMA q = 3 q = 5 s = 1 s = 2 s = 3 s = 4 p0

1 0.91 0 0 0 0 17.3 14.6 14.9 14.4 15.6 16.0 17.0 1
2 0 0.36 0 0 0 17.0 13.9 14.3 13.2 14.4 15.5 16.0 1
3 0 0 0.48 0 0 17.3 14.6 15.0 13.8 15.1 16.1 16.6 1
4 0 0 0 0.34 0 17.2 14.2 14.6 13.4 14.7 15.8 16.5 1
5 0 0 0 0 0.46 17.9 14.9 15.2 13.9 15.3 16.2 16.8 1
6 0.36 0.36 0 0 0 15.0 13.4 13.7 13.4 13.2 13.8 14.3 2
7 0.54 0 0.54 0 0 12.8 12.4 12.4 12.9 12.2 12.3 12.7 2
8 0.32 0 0 0.32 0 15.2 13.4 13.6 13.1 13.3 14.1 14.7 2
9 0.49 0 0 0 0.49 13.2 12.4 12.5 12.4 12.0 12.3 12.7 2

10 0 0.54 0.54 0 0 8.79 8.75 8.88 12.0 8.21 8.25 8.41 2
11 0 1.6 0 1.6 0 3.48 3.59 3.57 8.99 3.89 3.68 3.50 2
12 0 0.28 0 0 0.28 13.0 11.1 11.3 10.3 11.3 12.0 12.4 2
13 0 0 0.28 0.28 0 13.0 11.3 11.4 10.6 11.5 12.2 12.5 2
14 0 0 1.26 0 1.26 4.28 4.41 4.34 8.69 4.41 4.20 4.20 2
15 0 0 0 0.56 0.56 8.60 8.60 8.70 12.2 8.20 8.19 8.28 2
16 0.01�0.15 0.07 0.17 �0.09 15.0 12.3 12.5 11.5 12.8 13.7 14.3 5 (2)⇤
17 0.07�0.13�0.4 0.19 0.35 10.1 10.0 10.1 12.3 9.34 9.43 9.66 5 (1)⇤
18 0.4 0.63�0.57 0.47 �0.68 4.74 4.97 4.94 9.30 5.09 4.65 4.67 5 (5)⇤
19 �1.11 0.26�0.17 0.34 �0.04 11.8 12.5 12.2 14.4 13.3 11.3 11.7 5 (4)⇤
20 2.51 7.11 7.05 7.11 7.08 1.19 2.88 1.30 7.44 3.02 2.19 1.47 5 (5)⇤

⇤E↵ective p0 shown in parentheses.

variations (in contrast to the observed variables as
discussed in this paper) so that we can simply mon-
itor that particular source only. This will be further
investigated in another paper.

E↵ect of Inaccurate Specification of the
Number of Out-of-Control Variables

In the above simulations, we used a value of s that
coincided with the value for p0, which might not be
possible in all practical applications. In some applica-
tions there may be several alternative out-of-control
distributions having a variety of di↵erent values for
p0 so that it is impossible to achieve the ideal situa-
tion of s = p0 for all special cases. Thus, it is useful
to study the performance implications of the inferior
matches where s 6= p0.

With p0 = 2 and p = 10 and 50, we used values
of s = 1, 2, and 3 to simulate the cases where p0

is slightly under- or overspecified. We found that the
ARL was hardly a↵ected by these choices for s. Plots
of the ARL versus shift size (not shown) revealed that

the curves for the di↵erent values of s were visually
indistinguishable.

Table 7 includes results for which s is far smaller
than p0, giving the results for the VS-MEWMA chart
with s = 2, while p0 is set to 2, p/2, and p, re-
spectively. The MEWMA chart performance is also
shown for comparison.

It is seen from Table 7 that the VS-MEWMA
chart’s performance is not much worse than that
of the MEWMA chart, even when p0 is greatly un-
derestimated, especially with larger shift sizes. With
smaller shifts, say � < 0.8, the penalty for underes-
timating p0 may be confounded with a nonoptimal
value of �, since the same value of � is used for both
charts but the optimal value for the VS-MEWMA
chart may be smaller.

This suggests that the VS-MEWMA chart is ap-
pealing for applications where most, but not all,
of the out-of-control distributions have changes in
only a few variables. It is more e↵ective than the
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TABLE 7. ARL Comparison Under Parameter Misspecification (p = 10, s = 2, � = 0.2, ARL0 = 200)

Steady-State ARL Zero-State ARL

MEWMA VS- MEWMA MEWMA VS- MEWMA

� p0 = 2 5 10 2 5 10 2 5 10 2 5 10

0.2 127 77.0 43.2 132 86.9 52.9 131 79.6 44.7 135 88.4 54.9
0.4 52.9 21.2 10.7 54.9 25.6 14.3 54.8 22.3 11.5 56.8 26.7 15.3
0.6 23.6 9.76 5.53 23.7 11.3 7.32 24.9 10.3 6.02 24.4 12.1 7.99
0.8 13.16 6.05 3.75 12.9 7.03 4.92 14.0 6.54 4.16 13.5 7.53 5.45
1.0 8.84 4.41 2.90 8.46 5.10 3.71 9.38 4.83 3.24 8.92 5.51 4.24
1.5 4.69 2.73 1.94 4.54 3.10 2.40 5.17 3.04 2.16 4.82 3.41 2.83
2.0 3.29 2.05 1.54 3.17 2.29 1.85 3.64 2.27 1.89 3.35 2.54 2.18
2.5 2.58 1.70 1.22 2.49 1.87 1.54 2.87 1.99 1.38 2.61 2.09 1.97
3.0 2.15 1.45 1.05 2.09 1.61 1.30 2.40 1.80 1.03 2.19 1.94 1.81
3.5 1.87 1.23 1.01 1.83 1.39 1.11 2.09 1.41 1.00 1.98 1.73 1.44
4.0 1.68 1.09 1.00 1.63 1.21 1.03 1.98 1.09 1.00 1.82 1.40 1.11
4.5 1.53 1.02 1.00 1.47 1.09 1.00 1.88 1.01 1.00 1.58 1.12 1.01
5.0 1.38 1.00 1.00 1.32 1.03 1.00 1.69 1.00 1.00 1.31 1.02 1.00

MEWMA chart with small values of s and p0, of
course, but is still e↵ective even with s < p0.

Figure 4 shows the steady-state ARL contour
plots for the VS-MEWMA chart with di↵erent val-
ues of p0 and s. A process with p = 10 is simulated; a
small shift of � = 0.5 and a moderate shift of � = 1.5
are studied. The vertical parallel lines on the left of
the graphs show that when p0 is small, the value of s
does not a↵ect ARL performance significantly. How-
ever, if p0 is large (>5 or 6), the ARL performance
deteriorates quickly if s is smaller than 5. This im-
plies that if p0 is small, the ARL performance is quite
robust against misspecification of s; while, if s < p0,
the ARL performance may deteriorate.

Statistical Properties and
Design of VS-MEWMA Charts

The VS-MEWMA chart is di↵erent from tradi-
tional charts, since the VS procedure is incorporated
in process monitoring. Therefore, in the following, we
further study its performance under di↵erent shift di-
rections and discuss its design.

Directionally Variant Property of the
VS-MEWMA Chart

Both Hotelling’s T 2 and MEWMA charts enjoy
the property of being directionally invariant. That
is, their ARL performance is only influenced by

FIGURE 4. Steady-State ARL Contour Plot for the VS-MEWMA Chart under Parameter Misspecification. p = 10, � =
0.2, ARL0 = 200. (left) � = 0.5; (right) � = 1.5.
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FIGURE 5. ARL Contour Plot of the Steady-State ARL
of the VS-MEWMA Chart (p = 10, s = 2, � = 0.2, in-
control ARL = 200).

the shift magnitude via a noncentrality parameter
(NCP), (�T⌃�1�)1/2. The VS-MEWMA chart with
s = p, for which all variables may be assumed to be
out-of-control, reduces to the MEWMA chart and
is thus directionally invariant. With s < p, the di-
rectionally invariant property does not hold. As an
illustration, we studied a VS-MEWMA chart with
p = 10, s = 2, and � = 0.2; the process vari-
ables are still assumed mutually independent, i.e.,
⌃ = Ip. By varying the shift magnitude of the first
two out-of-control variables, �1 and �2, we obtained
the ARL values corresponding to di↵erent combina-
tions of shifts. It was found that for all shifts having
the same value of the NCP, the out-of-control ARL

values show slight variation with direction. For exam-
ple, for all � such that NCP = 1, the out-of-control
steady-state ARL varied between 14.3 and 16.3.

Figure 5 shows the contour plot under di↵erent
combinations of (�1, �2). The contour plots almost
form concentric circles, but with a slightly increased
ARL when the shift sizes are nearly equal. A circle is
shown (with a dashed line) as reference, which coin-
cides with the 2.0 contour when only one direction is
shifted. With nearly equal shifts, the circle is inside
the ARL contour, indicating that a slightly larger
NCP is required for the same out-of-control ARL
when the shift is equally distributed. This seems rea-
sonable, since one variable carrying the entire shift is
more likely to be correctly identified by the VS step
compared with several variables carrying a shift hav-
ing the same NCP value. Furthermore, the benefit of
the VS method lies in dimensionality reduction, and,
as the number of shifted dimensions increases, that
benefit is eroded.

Designing a VS-MEWMA Chart

Besides the number of suspicious variables, the
most critical choice to be made in designing a VS-
MEWMA chart is the value of the smoothing pa-
rameters, �. As we noted above, this parameter af-
fects the monitoring and diagnosis properties of the
control chart directly. In the following, we study the
steady-state ARL performance of the VS-MEWMA
chart with di↵erent values of � and �, which is shown
in Figure 6. For illustration, the process is still as-
sumed to have ⌃ = Ip.

To quickly detect shifts as small as 0.2 or 0.4, we
can see from Figure 6 that a small value of � is bene-
ficial. For a shift of magnitude 1.0, � ⇡ 0.13 in Figure

FIGURE 6. Steady-State ARL Contour Plots of VS-MEWMA (s = 2). (left) p = 10; (right) p = 50.
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6(a) and � ⇡ 0.1 in Figure 6(b) give the lowest out-
of-control ARL. If the shift magnitude increases to
2.0, the optimal values of � move to around 0.45 and
0.3, respectively. A further increase of shift size to
3.0 drives the optimal values of � to 0.8 and 0.6. If
the shift size is as large as 5.0, the optimal value of
� approaches 1.0, which means that the VS-MSPC
chart using only the most recent observations is fa-
vored. The above phenomenon also resembles the tra-
ditional univariate EWMA chart in choosing �, for
which small values are often recommended for detect-
ing small shifts. As the choice of � largely depends on
the values of p, s, and �, a simple recommendation
that satisfies all needs is hard to obtain. In general, a
small value of � is suitable for detecting small shifts
and a large value is recommended for large shifts.

Once the smoothing parameter value is chosen,
we must determine control limits for a specified in-
control ARL. In this research, as a close-form equa-
tion is di�cult to obtain, we designed a program and
used Monte Carlo simulation to obtain control limits
given all other design parameters. (The simulation
program is available from the authors upon request.)

A Footwear Manufacturing Example

In this section, we use a real example from a
footwear manufacturing process to illustrate the im-
plementation of the VS-MEWMA chart for quality
improvement. Shoe making essentially assembles dif-
ferent parts, including inner sole, middle sole, outer
sole, vamp, heel, etc., in a production line. Normally,
an inner sole and a vamp are first attached to a
form with approximately the shape of a human foot,
called a shoe last. A reference circle is then drawn
on the bottom of the last using a pen, which will be
used in later steps such as polishing and glue spread-
ing. Specifically, a shoe-shaped wooden mask is first
pressed against the last manually, and then a worker
uses a pen to draw a circle on the last along the
wooden mask edge. That circle is called a reference
circle and is used in subsequent production proce-
dures. Finally, the middle and outer soles are glued
to the inner sole to form a shoe.

Among all these steps, the drawing step that
plots the reference circle is critical to shoe quality.
A displaced reference circle may cause misalignment
among the sole, vamp, and last, which further leads
to defects such as glue overflow, glue deficiency, and
shape distortion in later production steps. Moreover,
mask shifts, rotations, and pen tilts may make the
reference circle shift out of control. Therefore, moni-

FIGURE 7. Measurement Points for Characterizing a Ref-
erence Circle.

toring the circle position is important to quality con-
trol in shoe production.

To characterize the reference circle, a measure-
ment baseline (called a reference line) is defined, and
shoes are put against the baseline. For each shoe
sample, eight points are identified on the circle, and
their distances to the reference line are measured,
which forms an eight-dimensional observation vector
for each shoe. Figure 7 illustrates the definition of
the measurement point and variables on a shoe.

In order to monitor this process, 20 samples were
collected from the production line (as shown in Table
8 and Figure 8). The sample variance-covariance ma-
trix is shown in Table 9. Four types of multivariate
control charts, T 2, VS-MSPC, MEWMA, and VS-
MEWMA, were applied to monitor the process. Both
MEWMA and VS-MEWMA charts share a smooth-
ing parameter value of 0.2 for a fair comparison. Since
the production is essentially labor intensive and the
production pace is rather slow, the in-control ARL
for all four charts is set to 25. Control limits were
calculated via numerical simulations. Since we have
no other historical observations available, the sam-
ple mean vector and variance-covariance matrix were
treated as in-control values of the process. Once the
control limits were obtained, the 20 samples were
plotted on each chart and compared against the lim-
its. The control charts are shown in Figure 9; detailed
charting statistics and control limits are reported in
Table 10.
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TABLE 8. Measurements of Reference Circles in Footwear Manufacturing

Measurement Point (mm)

Samples 1 2 3 4 5 6 7 8

1 100.0 115.8 107.8 344.2 743.6 849.2 529.6 567.8
2 108.0 120.6 111.0 337.2 739.0 852.4 531.8 561.8
3 103.2 112.8 114.0 322.8 747.6 840.0 529.8 568.0
4 90.6 96.2 159.8 413.2 724.0 833.4 551.8 559.0
5 94.6 110.0 158.0 395.6 724.0 835.4 552.6 564.6
6 96.0 99.8 148.8 421.4 727.8 823.6 533.2 565.4
7 90.2 110.8 122.2 363.8 742.2 832.4 522.4 550.0
8 90.4 104.2 142.2 391.4 731.2 828.2 530.0 557.6
9 96.2 112.8 104.6 335.8 752.8 839.0 521.6 549.2

10 90.0 111.0 162.0 406.0 720.8 830.2 550.8 569.0
11 86.4 109.2 145.6 382.4 726.6 840.6 543.4 558.6
12 98.8 106.8 163.6 430.4 726.6 831.4 551.2 567.6
13 94.6 107.6 161.8 416.4 734.0 832.8 543.4 566.6
14 112.8 120.0 96.0 345.6 747.8 843.6 523.6 565.2
15 88.0 107.4 103.2 353.0 738.8 835.6 517.8 558.2
16 76.4 111.0 108.6 349.2 747.0 860.0 518.2 543.6
17 87.4 105.8 156.4 419.0 730.4 841.0 536.6 568.4
18 82.8 110.6 117.0 424.6 744.0 837.4 523.6 556.2
19 96.4 114.4 92.2 330.2 753.2 848.8 518.0 555.2
20 87.2 105.8 166.8 410.0 732.4 832.6 543.8 562.4

Figure 9 shows that, among the four charts, the
VS-MEWMA chart is the only one that triggers an
alarm, which happens at sample 20. Figure 9 also
shows the suspicious variables suggested by the VS-
MSPC and VS-MEWMA methods. It is interesting
to note that variables y5 and y6 have been selected
each time as suspicious. We also noticed that sam-
ple #11 and sample #20 have the lowest and largest
charting statistics on the VS-MEWMA chart, respec-
tively. A plot for these two samples is shown in Fig-
ure 10. Since the variables are highly correlated and

the absolute values do not show meaningful informa-
tion, their PCA-standardized distances are shown. It
is seen that for these two samples y5 and y6 have
almost opposite values. This indicates that one fail-
ure pattern, e.g., mask rotation, may have happened
when the operator drew the circle.

Conclusions and Future Research

On the basis of the FVS algorithm, this paper ex-
tends the VS-MSPC chart by incorporating informa-
tion from recent observations, in addition to the lat-

TABLE 9. Variance-Covariance Matrix of the Measurement Points

y1 y2 y3 y4 y5 y6 y7 y8

y1 72.5 25.6 �62.1 �122.3 18.9 4.9 0.2 29.7
y2 25.6 35.2 �105.6 �153.6 37.4 34.6 �31.4 �1.7
y3 �62.1 �105.6 699.6 833.7 �241.1 �150.8 287.9 87.0
y4 �122.3 �153.6 833.7 1372.9 �289.1 �216.7 300.3 92.8
y5 18.9 37.4 �241.1 �289.1 103.9 54.3 �107.9 �35.4
y6 4.9 34.6 �150.8 �216.7 54.3 79.6 �50.6 �21.9
y7 0.2 �31.4 287.9 300.3 �107.9 �50.6 150.0 51.7
y8 29.7 �1.7 87.0 92.8 �35.4 �21.9 51.7 52.0
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FIGURE 8. Plots of Sample Observations.

est one, for multivariate process monitoring and fault
diagnosis, leading to a new VS-MEWMA chart. The
new chart utilizes recent observations for both iden-
tifying suspicious variables and increasing the con-
trol chart sensitivity by focusing detection only on
those “suspicious” variables. The rationale behind
the VS-MEWMA chart is to first reduce dimen-
sionality (and therefore improve detection sensitiv-
ity) and then monitor the reduced-dimension pro-

cess. The statistical e�ciency and robustness of the
VS-MEWMA chart are studied via simulation. The
proposed chart has superior performance in detecting
shifts in a small set of variables in a high-dimensional
process; it is also robust to parameter misspecifica-
tion if the number of shifted variables is small, and it
still performs satisfactorily even if a shift a↵ects all
variables.

Moreover, note that VS-MEWMA charts pro-
posed in this paper and in Zou and Qiu (2009) use
a bound (s and q, respectively) to limit the number
of shifted variables selected in each step. The pa-
rameter s is a hard bound, whereas q is an upper
bound. In fact, instead of viewing the VS step as a
penalized likelihood method applied to the EWMA
statistic wt, one may consider a prior distribution
for the probability of a variable to shift and update
the posterior distribution after observing yt, simi-
lar to the Box-Meyer Bayesian approach for iden-
tifying active factors in the design of experiments
(Box and Meyer (1993)). Such priors mimic the
penalty imposed on the number of shifted variables
but with soft-margins. It is also expected that such

FIGURE 9. Control Chart Comparison for the Shoe Production Process. (a) T 2 chart; (b) VS-MSPC chart (s = 2, � =
0.2); (c) MEWMA chart (� = 0.2); (d) VS-MEWMA chart (s = 2, � = 0.2).
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TABLE 10. Charting Statistics
and Control Limit (CL) of the Example

VS- VS-
T 2 MSPC MEWMA MEWMA

CL

Sample 94,289.0 74,142.0 93,454.6 73,407.8

1 93,977.7 73,458.0 93,355.8 73,241.3
2 92,604.1 72,667.8 93,203.9 73,125.9
3 94,075.4 73,856.2 93,376.5 73,271.3
4 93,675.1 73,501.7 93,433.7 73,317.3
5 93,083.4 72,858.3 93,363.0 73,225.3
6 92,495.6 72,699.8 93,187.8 73,120.0
7 92,160.3 72,726.5 92,980.8 73,041.0
8 92,108.0 72,506.6 92,805.7 72,933.9
9 93,249.8 73,654.7 92,893.3 73,077.5

10 92,814.4 72,413.9 92,875.8 72,944.4
11 92,834.6 72,642.5 92,867.0 72,883.9
12 93,545.7 73,452.4 93,001.8 72,997.4
13 93,817.6 73,940.0 93,164.1 73,185.4
14 93,093.6 73,054.7 93,148.6 73,159.2
15 92,478.6 72,252.6 93,012.7 72,977.4
16 93,371.8 73,558.2 93,082.0 73,092.6
17 93,630.1 73,535.9 93,190.2 73,180.8
18 93,812.1 73,501.8 93,312.2 73,244.5
19 93,695.6 73,661.0 93,388.3 73,327.8
20 93,654.8 73,838.7 93,440.5 73,429.7

a Bayesian updating procedure would resemble an
EWMA scheme that can capture recent information
(Girshick and Rubin (1952)). In future work, we plan
to explore Bayesian methods in adaptively determin-
ing the number of shifted variables for multivariate
process monitoring and diagnosis.

FIGURE 10. Plot of Samples #11 and #20 (standard-
ized).

The VS-MEWMA chart proposed in this paper is
for Phase II monitoring only. Developing a VS chart
for Phase I analysis would be useful to pursue in
future research. Moreover, the VS-MEWMA chart
accumulates all recent observations to estimate the
process mean. As suggested by one referee, it is ex-
pected to be more e�cient if a change point could
be first identified, and then only subsequently, the
suspected out-of-control samples could be used to se-
lect variables and estimate process shifts. Zou et al.
(2011) developed a VS method for identifying respon-
sible variables following a signal. A similar approach
could be applicable in the Phase I analysis as well.

Appendix A

Wang and Jiang (2009) proposed a VS-MSPC
chart that monitors ⇤(yt) = 2yT

t ⌃�1µ⇤t�µ⇤Tt ⌃�1µ⇤t .
Letting ⇤1(yt) = yT

t ⌃�1µ⇤t , we now prove that the
control chart statistic ⇤(yt) is equivalent to ⇤1(yt).
Note that µ⇤ is obtained from Equation (2); i.e., only
s components are nonzero. Without loss of general-
ity, assume that the first s components are nonzero
and µ⇤ can be represented as (�0,00)0 where 0 de-
notes a zero vector of length p � s. Accordingly, we
can partition yt and ⌃�1 as

yt = (u,v)0, ⌃�1 =
✓

A11 A12

A21 A22

◆
,

respectively. It follows that

⇤ =
✓
u� �

2

◆0
A11� + v0A12�

⇤1 = ⇤ +
1
2

�0A11�.

Note that � is obtained from Equation (2), i.e.,

� = arg min
�

[(u� �)0A11(u� �)

+ 2(u� �)0A12v + v0A22v].

Taking the first-order derivative and setting it to 0,
the above equation gives � = u+A�1

11 vA12. Plugging
this estimate into ⇤ and ⇤1, it follows that

⇤ =
✓
u� �

2
+ A�1

11 A12v
◆0

A11�

=
1
2

�0A11� =
1
2
⇤1,

i.e., monitoring ⇤ is equivalent to monitoring ⇤1.
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Appendix B

The following pseudo-code illustrates how the so-
lution to Equation (7) is obtained.

1. Let s0 = 0 // number of selected variables
2. Let a be a list of length s0 // list of selected

variables
3. for i = 1 to p

(i) Add the ith variable to the list of selected
variables if it is not in the list yet (move to
the next variable if this one is already in the
list)

(ii) Fit model using all selected variables
(iii) Calculate R2 of the model

4. end of the “for” loop
5. Append the variable that has the largest R2

value to list a
6. s0 = s0 + 1
7. if (s0 < s), go to step 3 to select next variable;

otherwise, a model with exactly s variables is
selected, so the process terminates.

At step 3, with s0 tentatively selected variables,
we must obtain the solution µ⇤t , which has s0 nonzero
elements, to minimize the weighted likelihood func-
tion in Equation (5). With the consideration of s0 
s, the objective is given by:8>>><

>>>:
min
µt

 
tX

i=0

!i(zi �Rµt)T(zi �Rµt)

!

s.t.
X

j

I(|µt(j)| 6= 0)  s0.

By rearranging variable sequence and moving all
nonzero coe�cients in µt together, the design ma-
trix and coe�cients can be partitioned as follows:

R =


R1|{z}
p⇥s0

R2|{z}
p⇥(p�s0)

�
, µt =


µt,1

0

�
.

Now, R2 can be safely removed from the model
to reduce the number of variables to s0. With sim-
ple manipulation, we can get the estimate that min-
imizes the weighted likelihood function, as follows
(the nonzero part)

µ⇤t,1 =

�
RT

1 R1

��1
tX

i=1

!iRT
1 zi

tX
i=1

!i

=
�
RT

1 R1

��1
RT

1 R
tX

i=1

0
BBBB@

!i

tX
i=1

!i

yi

1
CCCCA .

Let vt = Rwt. Alternatively, if we choose to mini-
mize Equation (7), which uses EWMA smoothed ob-
servations directly, the optimal solution µ⇤t (to save
notations, we use the same notation) should satisfy:8>><

>>:
min
µt

�
(vt �Rµt)T(vt �Rµt)

�

s.t.
X

j

I(|µt(j)| 6= 0)  s.

Again, we rearrange variable sequence as above, and
the nonzero part of the solution is, therefore, given
by

µ⇤t,1 =
�
RT

1 R1

��1
RT

1 Rwt

=
�
RT

1 R1

��1
RT

1 R
tX

i=1

�(1� �)t�iyi.

Therefore, setting

!i = �(1� �)t�i

,
tX

i=1

�(1� �)t�i

makes the above two solutions equal, when t!1.

This shows that by using the above weighting
scheme, minimizing Equation (5) is equivalent to
minimizing Equation (7). Therefore, in this work, we
use the simple EWMA form in Equation (6) to ac-
cumulate recent observations and then use the above
VS algorithm to obtain µ⇤t .
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